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Abstract 

 

The scaling of VLSI structures leads to continuous increase in current density that 

results in ever greater interconnect Joule heating.  In addition, a variety of low-k materi-

als have been introduced to reduce the RC delay, dynamic power consumption and 

crosstalk noise in advanced technology. Together with the poor thermal conductivity of 

such materials and more metal levels added, the increasing thermal impedance further 

exacerbates temperature rise in interconnects.  As a result, not only will thermal effects be 

a major reliability concern, but also the increase of resistivity with temperature can 

degrade the expected speed performance. On the other hand, overly pessimistic estima-

tion of the interconnect temperature will lead to overly conservative approach. Hence, 

performing a more realistic thermal modeling and analysis of interconnects is critical.   

This research proposes both compact analytical models and fast SPICE based 3-D 

electro-thermal simulation methodology to characterize thermal effects due to Joule 

heating in high performance Cu/low-k interconnects under steady-state and transient 

stress conditions.  The results demonstrate excellent agreement with experimental data 

and those using Finite Element (FE) thermal simulations (ANSYS).  The effect of vias, as 

efficient heat transfer paths to alleviate the temperature rise in the metal wires, is included 

in our analysis for the first time to provide more accurate and realistic thermal diagnosis.  

It shows that the effectiveness of vias in reducing the temperature rise in interconnects is 

highly dependent on the via separation and the dielectric materials used.  The simulation 
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methodology has also been applied to quantify the use of dummy thermal vias as addi-

tional heat sinking paths and possible solution to hot wires.     

The impact of Joule heating on the scaling trends of advanced VLSI interconnects 

has been evaluated in detail.  It shows the interconnect Joule heating can strongly affect 

the maximum operating temperature of the global wires which will, in turn, constrain the 

scaling of current density to mitigate electromigration and, thus, greatly degrade the 

expected speed improvement from the use of low-k dielectrics.  Coupled analysis of 

reliability and delay, under the influence of thermal effects, is performed to optimize 

interconnect structures such as wire aspect ratio and ILD thickness.  Finally, potential 

bottlenecks and opportunities of future heterogeneous three dimensional (3-D) ICs with 

various integration scenarios are identified from the thermal point of view.  It is shown 

that under certain scenarios, 3-D ICs can actually lead to better thermal performance than 

planar (2-D) ICs.  Tradeoffs among power, performance, chip real estate and thermal 

impact for 3-D ICs are evaluated.  
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Chapter 1 
 

Introduction 

 

 

1.1   Background 

 

The unprecedented prosperity of information technology has driven semicon-

ductor industry to evolve at an incredible rate.  The growing demand for higher 

performance in integrated circuits (ICs) results in faster device switching speed, 

greater number of transistors, increased functional density and larger chip size [1, 2].  

Consequently, the communication, supported by on-chip interconnects, between de-

vices and between circuit blocks is becoming more complex and a challenging 

problem.  The connection of miniaturized and closely packed transistors requires re-

duced wire cross-sections in the local levels, while the rapid increase in functional 

density and chip size leads to longer-distance communication in the global levels.  

With the aggressive scaling of VLSI technology, the interconnect delay, due to longer 

wires and smaller wire pitch, now plays a key role and becomes bottleneck in the con-
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tinued improvements in ICs density and speed [3, 4].  As illustrated by the Interna-

tional Technology Roadmap for Semiconductors (ITRS) [5], interconnect RC delay is 

dominating the chip performance in advanced technology nodes (Fig. 1.1).   

 

 Fig. 1.1: Predictions for device and wire delays from ITRS 2001 [5]. 

 

To mitigate this adverse-scaling trend of signal propagation (RC) delay, consider-

able work has gone into overcoming the interconnect limitations.  For instance, 

hierarchical interconnect structure has been adopted to incorporate several metal levels, 

so that long global interconnects can be routed to higher tier and maintain larger cross-

sections to minimize wire resistance [6-8].  This interconnect architecture along with the 
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demand for more wiring has resulted in an increasing number of interconnect metal 

levels. 

Table 1.1: Evolution of characteristics for Intel® commercial processors 

 

(Table 1.1).   In addition, Cu has replaced Al as the interconnect metal for its lower 

resistivity [9, 10] and low dielectric constant (low-k) materials has been pursued as an 

alternative to silicon dioxide to reduce interconnect capacitance [11, 12].  However, 

although all these tremendous efforts have salvaged the attention-getting interconnect 

delay problem, the interconnect reliability due to electromigration and thermal effects is 

quickly emerging as a serious integration issue.  In addition, the fast increasing power 

density in ICs (Fig. 1.2) [13], together with the scaling trend toward lower power supply 

(Vdd) to reduce short channel effect, hot electrons, gate stress and leakage [14, 15], has 

significantly increased the current density in interconnects.  Furthermore, interconnects 

are farther away from the substrate, where heat sink is usually attached.  As a result, 

interconnects generally experience higher average temperature than transistors do.   

Year 1972 1982 1993 2002 

Processor 8008 286 Pentium® Itanium 2® 

Technology Node 10 µm 1.5 µm 0.8 µm 0.18 µm 

Frequency (MHz) 0.2 6 60 1000 

Transistors 3500 120,000 3,100,000 221,000,000 

Chip Area (mm2) 15.2 68.7 217 421 

Metal Layers 1 2 3 6 
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Fig. 1.2: Evolution of power density for Intel processor [13] (Courtesy of Intel). 

 

It is not difficult to imagine that not only will interconnect delay be a major show-

stopper for continuous ICs performance advancement, but also the concern of reliability 

and thermal effect of interconnect can potentially become another serious system design 

constraint.  In short, as semiconductor technology strives to keep up with Moore’s Law 

[1], it is imperative to understand and analyze the emerging VLSI “hot wire” phenomena 

to handle the impact of interconnect thermal effect in early design phase. 

 

1.2   Thermal Implication of Interconnect Scaling  

 

Thermal effects are an inseparable aspect of electrical power distribution and signal 

transmission through interconnect nets due to Joule heating (or self-heating) caused by 
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current flow in the wire.  The temperature rise, on top of the substrate temperature, in the 

interconnects is determined by the product of Joule heating power dissipation and the 

thermal impedance from the wires to the substrate.  Before proceeding to further discus-

sion, it is instructive to be familiar with basic on-chip interconnect structure and 

terminology.  The interconnects (or wires) in a modern IC chip can be broadly character-

ized into three groups according to the functions they perform. These are the signaling 

interconnects, the clock distribution interconnects and the power and ground supply 

distribution interconnects.  Interconnects can be further subdivided into three categories 

according to the range of their lengths and their cross section dimension. These are the 

local, semiglobal/intermediate and the global interconnects. The global interconnects are 

responsible for long distance communication on a chip and have a larger cross sectional 

area to minimize resistance. Whereas, the local interconnects have the shortest range and 

the tightest cross sectional dimensions.  Modern ICs have multiple levels of interconnects 

to accommodate their large numbers, starting from the local at the lowest level to the 

global at the top most levels. This is depicted in Fig. 1.3 [5].  The lower level intercon-

nects are used in local routing and they connect transistors that are a few microns apart.  

The higher level interconnects are used for global routing and they can span across an 

entire chip and may be as long as 2-3 cm in modern high-performance chips.  Vias are the 

metal fillings enabling inter-level wire connections.  The wires are separated by inter-

layer dielectrics (ILD) from level to level and isolated by inter-metal dielectrics (IMD) 

within the same level.  Traditionally, silicon dioxide (SiO2) has been  
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the choice of the dielectrics in ICs for its superior properties.  However, a variety of low 

dielectric constant materials, including organic and inorganic films, as well as the use of 

porosity and air-gaps [16-18], have been fiercely pursued since a decade ago for the 

benefit of reducing wire capacitance, cross-talk noise and dynamic power consumption.  

Unfortunately, these low-k dielectrics inevitably have very poor thermal properties (Fig. 

1.4 [5]).  Compounded with the poor thermal conductivity of such materials and more 

metal levels added with more advanced technology nodes, the increasing thermal imped-

ance further exacerbates temperature rise in interconnects. 

 

Fig. 1.3: Schematic showing the hierarchy of metal levels for distribution of intercon-

nects in modern ICs.  Figure taken from ITRS 2001 [5]. 
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On the other hand, the power consumption in the chips is rapidly becoming unman-

ageable as clock frequency continues to climb and chip temperature has been always a 

major concern to further chip advancement.  The reduction in supply voltage slows down 

the power consumption at the transistor level; however, the resultant increased current 

requirement leads to greater interconnect Joule heating.  The typical supply current is in 

the 100A range in modern chips and is expected to increase for future processors.  

Although the power dissipated by Joule heating is not a significant portion of the total 

chip power consumption yet, the interconnects are separated from the substrate by 

dielectrics with low thermal conductivity, and heat cannot be removed efficiently   

Therefore the temperature rise in interconnects can be non-negligible. The interconnect 
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 Fig. 1.4: Both dielectric constant and thermal conductivity of ILD materials  

   decrease with advanced technology nodes [5]. 
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structures with decreasing critical dimension will inevitably experience ever-higher 

current density and, the resultant greater temperature rise.   

 

1.3   Via effect   

 

 Since the lifetime of interconnects has an exponential dependence on the inverse 

metal temperature owing to electromigration [19, 20], thermal effect will limit the 

maximum allowable current density in the wires to limit the temperature rise in intercon-

nects.  It can be envisioned that, to some extent, the thermal effect may not only be a 

major reliability concern, but also constrain the speed performance due to limited current 

drive capability.   With the aggressive scaling trend, it is essential not to under-estimate 

the impact of interconnect temperature rise.  On the contrary, overly pessimistic estima-

tion of the interconnect temperature will lead to overly conservative design.  Therefore, 

accurate temperature estimation is extremely important to regulate the design rules and, 

hence, performing a more realistic thermal analysis of interconnects is critical. 
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Several publications have addressed the issue of low-k dielectrics and their impact 

on interconnect temperature, reliability and performance [21, 22].  Poor thermal conduc-

tivity of low-k insulators has been a major concern to cause substantial rise in 

interconnect temperature.  However, the effect of vias (Fig. 1.5), which have much higher 

thermal conductivity than the dielectrics and therefore can serve as efficient heat dissipa-

tion paths, has not been adequately addressed in those simplified thermal model [23, 24].  

Consequently, if via effect is ignored, the predicted temperature rise of interconnects can 

be much higher than the reality.  Neglecting via effect on interconnect temperature 

estimation can lead to intolerable prediction errors.  This research proposes both compact 

analytical models and fast SPICE based 3-D electro-thermal simulation methodology to 
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wire

Metal 
viaTransistors

Metal 
wire

Metal 
viaTransistors

 
 

    Fig. 1.5: SEM photo of local level interconnect 
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characterize thermal effects due to Joule heating in high performance Cu/low-k intercon-

nects under steady-state and transient stress conditions.  The results demonstrate excellent 

agreement with experimental data and those using Finite Element (FE) thermal simula-

tions (ANSYS).  The effect of vias, as efficient heat transfer paths to alleviate the 

temperature rise in the metal wires, is included in our analysis for the first time to provide 

more accurate and realistic thermal diagnosis.   

 

1.4   Dissertation Organization 

 

With the pursuit of realistic evaluation in mind, via effect is included in all the 

thermal models and simulations.  The impact of Joule heating on the scaling trends of 

advanced VLSI interconnects has been evaluated in detail.   

Chapter 2 derives the analytical interconnect thermal models to provide building 

blocks, which will enable us to quantify the impact of via effect and various interconnect 

parameters on the interconnect temperature rise.   The model is then applied to estimate 

the temperature rise of densely packed multi-level interconnects.  

Chapter 3 discusses the impact of Joule heating on the scaling trends of advanced 

VLSI interconnects.  Through a combination of extensive electrothermal simulation and 

2D field solver for capacitance calculation, the thermal characteristics of various Cu/low-

k schemes are quantified and their effects on electromigration reliability and interconnect 

delay is determined.   
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Chapter 4 describes a compact 3D electro-thermal simulation methodology to 

evaluate interconnect design options from a thermal point of view.  Use of dummy 

thermal vias as additional heat sinking paths is evaluated to alleviate the thermal impact 

on interconnect reliability.   Furthermore, this simulation methodology provides an 

efficient diagnosis tool for transient thermal stress analysis, which is usually extremely 

cumbersome, mostly unsolvable, in analytical forms.  

 Chapter 5 presents detailed thermal analysis of high performance three dimensional 

(3-D) ICs under various integration schemes.  A complete thermal model including 

power consumption due to both transistors and interconnect joule heating from multiple 

strata is presented.  Furthermore, tradeoffs among power, performance, chip real estate 

and thermal impact for 3-D ICs are evaluated.  

Chapter 6 summarizes the main findings and concludes this dissertation with sug-

gestion on possible future work.  
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Chapter 2 
 

Analytical Interconnect Thermal Model 

 

 

2.1   Motivation 

 

The conventional aluminum(Al)/silicon dioxide (SiO2) interconnect scheme 

reached its performance limitation a decade ago [3].  Hence, lower wire resistance and 

higher current density requirements have prompted an industry-wide shift from alumi-

num(Al) to copper(Cu).  Similarly, the minimization of interconnect capacitance is 

driving the introduction of a variety of low-permittivity dielectric materials.  Since these 

low-k dielectrics also have lower thermal conductivity than silicon dioxide, heat dissipa-

tion in the interconnect level has become more difficult.  Furthermore, VLSI scaling 

trends, such as increasing number of interconnect metal levels and increasing current 

density, have caused ever-profound thermal effects in the interconnects.  In a state-of �art 

chip, the interconnect temperature can rise more than 100 degrees above the ambient 
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temperature due to Joule heating and the heat dissipation from transistors in the substrate 

level.   
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ypical multilevel interconnect structure with heat sink attached to substrate.
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ugh knowing the interconnect temperature is the first step toward any kind of 

mal effect analysis, the temperature profile of a single interconnect is difficult 

e obtained experimentally for its miniature scale [25], not to mention multi-

urements.  In general, interconnect thermometry based on temperature-

electrical resistivity of the wire is used to calculate a spatially averaged 
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temperature rise of the interconnects [26].  However, it can provide neither the local 

temperature rise profile on the wire nor the temperature distribution along the multilevel 

interconnects.  On the other hand, various papers have been devoted to deriving analyti-

cal expressions for the temperature distribution in IC chips [27-29].  However, most of 

them only consider a single heat source without considering the effect of vias, which is 

not the realistic case for most interconnects.  In addition, the complicated nature of these 

expressions makes it very difficult to easily apply them to multi-level metal layers.  

Recently, Im [24] and Hunter [30, 31] have proposed simplified formule, while Chen [23] 

and Rzepka [32] applied 3-D finite element analysis to estimate temperature rise on 

multi-level interconnects.  However, the effect of vias, as an efficient path for conduction 

of heat has not been included in those simplified thermal model and simulation.  Conse-

quently, the predicted temperature rise of interconnects can be much higher than actually 

observed. 

Analytical thermal models are desirable to facilitate quick estimation of tempera-

ture rise in order to provide better insight and thermal design guidelines for advanced 

interconnect structures.  This chapter presents compact analytical thermal models for 

estimating the temperature rise of multilevel VLSI interconnect lines incorporating the  

effect of vias as efficient paths for conduction of heat.  The impact of vias has been 

modeled using i) a characteristic thermal length representing the distance along a metal 

line through which vias effectively remove the heat, and ii) an effective thermal conduc-

tivity of inter-layer dielectrics (ILD), kILD,eff, with kILD,eff = kILD/η, where kILD is the 
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nominal thermal conductivity of the ILD and η is a physical correction factor represent-

ing the heat removal by vias..  Both the spatial temperature profile along the metal lines 

and their average temperature rise can be easily obtained using these models.  The 

predicted temperature profiles are shown to be in excellent agreement with the 3-D finite 

element thermal simulation results.  The model is then applied to estimate the tempera-

ture rise of densely packed multi-level interconnects.  It is shown that in multi-level 

interconnect arrays, via density along the lines can significantly affect the temperature 

rise of such interconnect structures..  The influence of via self heating and thermal 

impedance of vias is considered here, providing more comprehensive and accurate 

results.   

The remainder of this chapter is organized as follows.  To provide a baseline, in 

Section 2.2, we validate that it is a legitimate approach to consider via effect.  Sections 

2.3 and 2.4 describe the derivation of our analytical model and discuss the impact of via 

effect.  In Section 2.5, we apply the model to multilevel interconnects and discuss the 

temperature distribution along metal layers.  The main results are summarized in Section 

2.6. 

 

2.2   Preliminary Observations 

 

The fact that the interconnect temperature does not increase inversely proportional 

to the nominal thermal conductivity of dielectrics suggests that the vias, which have 
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much higher thermal conductivity than ILD, serve as efficient heat dissipation paths.  If  

the via effect is not properly considered, the predicted temperature will be significantly 

higher than the temperature in practical situations.  As a result, there is danger of signifi-

cant errors in using overly simplistic assumptions to assess thermal problems in advanced 

interconnect structures with low-k materials.  In this work, the via effect is evaluated in 

details and is incorporated into our multilevel temperature distribution model.  Further-

more, due to the interconnect architecture that, in general, lower metal levels have much 

higher via density than the higher levels, the temperature rise among metal layers is 

expected to be quite different from what is predicted by the simplistic model.     

2.2.1   First glance at via effect 

Since the cross sectional area of vias is generally smaller than that of the wires, it 

may raise a concern that the resultant higher current density in the vias may generate 

significant heat, deteriorating their effectiveness in heat conduction.  However, as shown 

in [33], the temperature rise in the via is not as high as that in the wire.  A simulation 

validation was obtained by using ANSYS, a three dimensional finite element thermal 

simulation package.  The configuration simulated, as shown in Fig. 2.2, is Cu wire/via 

embedded in a low-k dielectric with via separation, L, varied as 250 µm, 100 µm and 5 

µm.  The metal width is taken to be 0.3 µm and both of the metal height and via height 

are 0.6 µm.  Polymer is chosen as the low-k insulator with nominal thermal conductivity 

of 0.3 W/m-K.  The electrical resistivity and thermal conductivity of Cu are assumed to 

be 2.2 µΩ-cm and 400 W/m-K.  The RMS current density of 2.1e6 A/cm2 is flowing in 
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the wire.  A uniform temperature, T0 , is assigned to the underlying layer of the block.  

The temperature rise of wires on top of substrate temperature is represented by θm(x) ≡ 

Tm(x)-T0, where Tm(x) is the wire temperature.  Adiabatic boundary conditions are applied 

to the top and four sides of the block where symmetry boundary conditions are satisfied.   
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Fig. 2.2:  Heat generated by Joule�heating is conducted downwards through both ILD

and vias.  L represents the separation between vias. 
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Two extreme simulation conditions have been carried out in Fig. 2.3, with no cur-

nt flowing through the via, condition (a); and with all the current flowing through via, 

ondition (b).  Therefore, only the thermal impedance caused by vias, Rth, v, is included in 

e analysis in condition (a), while the extra heat generated in the via due to current   
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Fig. 2.3: Two extreme simulation conditions: (a) no current flows through via, so there

is no heat generation in the via;  (b) all the current flowing through the wire

will also flow through the via and cause heat generation.  It should be noted

that, in both cases, the via helps transfer heat to underlying layer and reduce

the temperature rise on the wire.  
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density flowing in the via, Jv, is also taken into account in condition (b).  In practice, all 

the vias do not carry the same amount of current as in the wire.  

The comparison of temperature distributions along the metal wires are shown in 

Fig. 2.4 (a), (b) and (c) for via separation of 250 µm, 100 µm and 5 µm, respectively.  

The temperature profiles of the simplified 1-D thermal model, constant temperature 

value, with via effect completely ignored are also plotted in Fig. 2.4 (a) and (b).  It has 

the same value as well for the case of 5 µm via separation, although it is not plotted in 

Fig. 2.4 (c) to keep other curves more readable.  It should be noted that, with shorter via 

separation, the average temperature as well as the peak temperature in the wire is re-

duced.  It appears that within a certain range from via, the temperature reduction with the 

help of vias is particularly consumptious.  In addition, the simulations show that the 

temperature rise in the vias is minimal.  Even though percentage wise, the via contact 

exhibits a major contribution to the temperature rise in the wire for short via separation, 

the absolute value is quite small.   The vias are simply too short to produce much heat.  

Furthermore, under normal operating conditions, all the vias are not conducting current at 

the same time but they always help dissipate heat.  Consequently, it is legitimate to 

consider vias as efficient thermal sink paths. Finally, as long as the vias are connected to 

lower-temperature underlying layers, they will help dissipate heat no matter how far they 

are away from substrate.  With the above preliminary observations in mind, in the follow-

ing sections, we will quantify via effect and  evaluate if vias are always helpful.     
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Fig. 2.4:  Temperature distribution along the metal wire with via separation of 250

µm (top), 100 µm (middle) and 5 µm (bottom) for case (a) and (b) of Fig.

2.3.  It can be observed that there is no significant difference between the

two simulation conditions and temperature rise in the via is minimum.   
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2.3   Interconnect Thermal Model and Assumptions  

2.3.1   Energy conservation law 

In either steady state or transient condition, the first principle of energy conserva-

tion law must be satisfied at any instance,  

dt
dEEEE st

outgenin =−+
...

         (2.1) 

where the thermal energy entering, leaving, and generated in the control volume are Ėin, 

Ėout, and Ėgen, respectively.  The rate of change of energy stored within the control volume 

is designated as dEst/dt.  Consider a rectangular metal wire with cross-sectional area Ac, 

and periphery p embedded in a dielectric medium as shown in Fig. 2.5.  The temperature 

variation can be modeled as a one-dimensional situation which refers to the fact that only 

one coordinate (x) is needed to describe the spatial temperature variation.  The tempera-

ture gradient along y and z directions is negligible for a long metal wire with relatively 

small cross section and high thermal conductivity.  Garden has proven that the error due 

to this simplification is less than 1% even for larger cross sections [34].  The conduction 

heat rate perpendicular to the control surface at x is indicated by the term qx.   

cmx A
x
Tkq

∂
∂=        (2.2) 

where km is the thermal conductivity of the metal wire and Ac is the cross-sectional area 

of the wire.  The conduction heat rate at the opposite surface can then be expressed as a 

Taylor series expansion where, neglecting higher order terms, 
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2.5:  A differential control volume, from a conducting metal wire embedded in a 

dielectric medium, shows energy balance. 
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   dx
x

qqq x
xdxx ∂

∂+=+        (2.3) 

presents the heat conducted to the surrounding medium.  It is proportional to the 

ce between the surface and the surrounding temperatures and the contiguous 

 area.   

   ))()('( ∞−= TxTdAShdq msmcon      (2.4) 
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where the proportionality constant, h, is termed as heat transfer coefficient.  dAs is the 

surface area where heat in the control volume can be transferred into the medium.  S�m is 

the spreading factor to model the multi-dimensional heat spreading phenomena.  Tm(x) is 

the metal temperature at x and T∞ is the temperature of the medium far from the metal 

surface.  

As required by energy conservation law Eq. 2.1, the heat entering the differential 

control volume (qx-qx+dx) plus the volumetric rate of thermal energy generation in the 

control volume (q���) minus the heat dissipated to the medium (dqcon) must be equal to the 

rate of change of thermal energy stored within the differential control volume.  Therefore, 

the governing heat diffusion equation with temperature variation dominating in x direc-

tion can be concluded as 

   
t
TAcAqTTphS

x
TAk

x cpcmcm ∂
∂=+−−

∂
∂

∂
∂

∞ ρ''')('][     (2.5) 

where ρ is the metal density and cp is the metal specific heat.  The product, ρ cp [J/m3K], 

commonly termed the volumetric heat capacity, measures the ability of a material to store 

thermal energy.   

2.3.2   Conduction dominant heat transfer 

Since, in general, thermally insulated package materials encapsulate the IC chip, 

heat convection to the ambient air is ignored by the application of the adiabatic boundary 

condition on the four side walls and top of the chip.  In addition, heat radiation is simply 

too small to be taken into account.  Therefore, only heat conduction will be considered as 
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the prevailing heat transfer mechanism.  Therefore, the net heat transfer processes can be 

quantified by the rate equation known as Fourier�s law, 

Tkq ∇−="              (2.6) 

where q� [W/m2] is the heat flux and k [W/m-K] is the thermal conductivity.  Further-

more, the substrate, to which a heat sink is usually attached, is assumed to be the sole 

heat dissipation path to the outside ambient, hence only heat conduction toward the 

substrate will be considered in our interconnect thermal modeling.  This assumption is 

validated in Fig. 2.6, as Zhou has shown that, with heat sink attached, the majority of heat 

will transfer through the substrate [35].   

Eq. 2.4 can then be further simplified if we consider heat is only transferred down-

wards and only heat conduction mechanism takes place, i.e.  

))()(')(( 0TxTwdxS
t
kdq mm
ILD

d
con −=       (2.7) 

where kd is the thermal conductivity of the dielectric medium and tILD is the underlying 

dielectric thickness.  kd / tILD  acting as the proportionality constant and can be treated as 

an equivalent conduction heat transfer coefficient.  w is the width of the metal wire and 

T0 is the temperature of underlying layer.  Accordingly, Eq. 2.5 results in 
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With the help of heat sink, particularly with fan, the majority of heat will

conduct to outside ambient through substrate rather than to printed circuit

board (PCB) [35]. 
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2.3.3   Steady state thermal modeling 

In this section, we will develop the interconnect thermal modeling under normal 

chip operation circumstances.  The thermal environment on the interconnects is consid-

ered to be under steady-state condition.  Transient stress analysis, such as under 

electrostatic discharge (ESD), will be discussed in chapter 4.  To begin with, consider a 

rectangular metal wire with thickness H, width w, length L, electrical resistivity ρm and 

thermal conductivity km, separated from the underlying layer by inter-layer dielectrics 

(ILD) of thickness tILD and thermal conductivity kILD.  The two ends, at x=±L/2, of the 

wire are connected to the underlying layer through vias (Fig. 2.7).  The vias are modeled 
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Fig. 2.7:  Geometry used to derive interconnect thermal model, representing parallel

metal wire array. 
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as round pillars, with diameter D and height tILD.  The electrical resistivity and thermal 

conductivity of vias are ρv and   kv.  The underlying layer temperature set to be T0, and 

therefore temperature at the via bottom Tv(0)=T0.  The temperature rise of wires and vias 

is represented by θm(x) ≡ Tm(x)-T0 and θv(y) ≡ Tv(y)-T0, respectively.  It is assumed that 

heat only flows downwards toward silicon substrate which is usually attached to a heat 

sink.  Following Eq. 2.8, under steady state conditions, with uniform root-mean-square 

current, jrms, flowing in the conductors, the governing heat equations for the wire  and the 

via are 
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where qm
��� (=j2

rms,mρm) and qv
��� (=j2

rms,vρv) are the volumetric heat generation in the wire 

and the via due to Joule heating.  LH,m and LH,v are the thermal healing length of the wire 

and the via,  defined as 

2
1

2
1

, 







=








≡

mILD

m

mILD

mm
mH Sk

wHk
Sk
Ak

L ,           (2.11) 

and     
2

1
22

1

,
)4(








=








≡

vILD

v

vILD

vv
vH Sk

Dk
Sk

Ak
L

π ,              (2.12) 

where Sm and Sv are the shape factor per unit length of the wire and the via, respectively, 

to represent heat spreading and, thus, to correct the deviation from one-dimensional heat 
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flow.  It should be noted that the shape factor is only a function of geometric parameters.  

As it will be seen later, shape factor Sm and spreading factor S�m are interchangeable and 

both describe the multi-dimension heat conduction flow from metal surface to surround-

ing medium.  The physical meaning of LH,m is that within the range of thermal healing 

length, LH,m, from vias, heat generated will flow through vias to the underlying layer.  

Beyond LH,m, heat will flow through ILD and the via effect is diminished.   

The two boundary conditions used to solve Eq. 2.9 are the adiabatic condition at 

the middle of the wire (x=0) due to symmetry, and the junction temperature θJ at the two 

ends of the wire (x=±L/2), with θJ=θm(x=±L/2)=θv(y=tILD).  

,0
)(

0

=
=x

m

dx
xdθ

    θm(x=±L/2)= θJ,              (2.13) 

In addition, the two boundary conditions to solve Eq. 2.10 are the temperature rise θJ at 

the top of the via (y=tILD) and zero at the bottom of the via (y=0).  

θv(y=tILD)= θJ,     θv(y=0)=0.             (2.14) 

The temperature rise along the wire and within the via can then be solved from Eq. 2.9 

and Eq. 2.10 as 
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with -L/2≤ x≤ L/2 and 0≤ y≤ tILD.  It is instructive to note that we can define qm
���LH,m

2/km 

(= jrms,m
2ρmLH,m

2/km = jrms,m
2ρmHw/kILDSm) in the second term of Eq. 2.15 as ∆T1-D, which 

represents the temperature rise in the wire obtained from simplified 1-D heat conduction 

model where via effect is not included.  Thereafter, the wire temperature rise, θm(x), from 

Eq. 2.15 can be interpreted as the combined contribution from via self-heating and the 

thermal impedance caused by the via (first term) and the Joule heating in the wire cor-

rected with the help of via effect (second term).  The ratio of θJ/∆T1-D has other important 

indications as will be explained in a later section.  To determine θJ, we need to realize the 

continuous flow of heat at the junction of the wire and the via, which can be shown as the 

continuity equation 
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Substituting Eq. 2.15 and Eq. 2.16 into Eq. 2.17, θJ can then be solved as 
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Effect of variation in electrical resistivity ρ with temperature was found to be small 

for practical situations and is ignored in this model. It should be noted that we should 

certainly include the temperature coefficient of resistivity (TCR) for electromigration 

tests where very high current densities are employed.  It is simple to do so because 
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electromigration tests are usually conducted on isolated wires and not multilevel struc-

tures.  Several papers have been devoted to study the case under electromigration test 

condition [36, 37]. The focus of our work, however, is to incorporate the via effect and to 

predict temperature distributions along multilevel interconnects under normal operation 

conditions.  Therefore, the resistivity used in this work is assumed to be a constant at 

ρ(TDie) to a first order approximation.   

The last pieces of the puzzle in this model are the shape factors Sm and Sv, which 

accommodate 3-D heat spreading and different boundary conditions. The commonly used 

Bilotti�s equation [29] is not adopted in this work to account for the deviations from 1-D 

heat flow.  This is due to the fact that it assumes a single heat source, whereas, in typical 

IC layout, there are multiple heat sources due to parallel metal wire array.  A new expres-

sion of heat spreading factor, S�m, is therefore derived here for uniformly separated 

infinite number of parallel wires and will be used in the following analysis throughout 

this work.  For the worst case scenario, all metal wires are assumed to carry the maxi-

mum RMS current density and separated by spacing d.  As shown in Fig. 2.8, the Joule 

heat transfers downward as well as spreads laterally in the ILD.  Assuming the lateral 

spreading to increase linearly with vertical coordinate, the spreading thermal resistance, 

Rspr, can be derived as 
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where d is the spacing between wires and is shared by the two wires for heat dissipation.  

Then, the total thermal resistance of ILD, Rth,ILD, can be calculated by combing the 

spreading resistance with the volume resistance, 

    dw

dt
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Fig. 2.8: Geometry used for calculating Rspr, Rrect and the spreading factor S�m.  Cross 

sectional view is shown on the left hand side.  Quasi 2-D heat conduction is 

used to correct 1-D heat conduction model.  Space between any two wires is 

shared for heat dissipation.    
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On the other hand, Rth,ILD can be also expressed as 
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By comparing Eq. 2.20 and Eq. 2.21, , S�m can be obtained as 
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The next step is to convert spreading factor S�m  to shape factor Sm.  By the definition of 

shape factor [38],  
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where q(x) is the heat transfer rate from the metal wire to the dielectric medium.  Hence, , 

Rth,ILD  can be manipulated as, 
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Again, by comparing Eq. 2.21 and Eq. 2.24, the conversion between Sm and S�m can be 

readily obtained as, 
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It should be noted that, depending on different layout and operating conditions, Sm could 

have different expressions than Eq. 2.26.  However, all the equations derived here can 

still be valid as long as the appropriate Sm is determined by either an appropriate analyti-

cal expression or extracted from simulation.   The Sv is adopted from [38] for a vertical 

cylinder in a semi-infinite medium attached to a constant temperature surface,  

)]/4/[ln(2 DtS ILDv π= .                         (2.27) 

After the shape factors are installed in Eq. 2.11 and Eq. 2.12, the effect of the via separa-

Fig. 2.9:  
Polymer, Analytical

Polymer, ANSYS

Oxide,    ANSYS

Oxide,    Analytical

Polymer, Analytical

Polymer, ANSYS

Oxide,    ANSYS

Oxide,    Analytical

Temperature profile along the Cu wires with 100 µm via separation. 

H = tILD = 0.8 µm, w = d = 0.3 µm, and  jrms,m = 3.7E6 A/cm2.  kpolymer = 

0.3 W/mK and k  =1.2 W/mK are assumed here. 
34 
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tion and heat spreading on the temperature profile along metal wire can be captured 

completely by Eq. 2.15.  As can be observed form Fig. 2.9, the result from analytical 

expression is shown to be within 3% agreement with the 3-D finite element thermal 

simulation using ANSYS.  

 

2.4   Impact of Via Effect on Effective kILD 

2.4.1   Via correction factor  

It should be noted that as predicted from Eq. 2.11 and validated from Fig. 2.9, the 

thermal healing length, LH,m, in a wire is longer if the ILD has lower thermal conductivity, 

(kpolymer = 0.3 W/mK v.s. koxide =1.2 W/mK).  Consequently, the via effect is more impor-

tant for low-k insulators.  By defining a via correction factor (η), the via effect can be 

incorporated into the effective thermal conductivity of ILD, kILD,eff, which can then be 

used in place of the nominal kILD in the conventional thermal equations.  An analytical 

expression for kILD,eff incorporating the via effect is now derived here.  ∆Tave is defined as 

the average temperature rise in one metal layer and it can be expressed as 
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On the other hand, ∆Tave can also be obtained from Eq. 2.15 as  
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Comparing Eq. 2.28 and Eq. 2.29, via correction factor, η, can be deduced as 
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which yields two important results. 

     η/, ILDeffILD kk =                  (2.31) 

 and         ηDave TT −∆=∆ 1  .              (2.32) 

2.4.2   Hot spot location  

As implied by Eq. 2.31 and Eq. 2.32, via effect will help increase the effective 

thermal conductivity of the ILD and, therefore, alleviate interconnect temperature rise if 

η<1.  On the other hand, if via self heating and thermal impedance caused by the via is 

excessive, η>1 may occur and via effect will be detrimental to the wire.  In addition, hot 

spots can occur within the vias if η>1.  The essential criterion to differentiate these two 

domains is to evaluate the ratio of θJ/∆T1-D, as indicated by Eq. 2.30.  With θJ/∆T1-D,<1, a 

beneficial via effect is guaranteed.  This critical condition can be further shown to be 
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From Eq. 2.33 and Eq. 2.34, various interconnect parameters can be quickly evaluated to 

determine the hot spot location (in the wire or within via) and the nature of via effect 

(alleviate or enhance wire temperature rise).  To illustrate the effect of the via, η and 

kILD,eff are plotted against via separation  with two via diameter-to-wire width ratios, D/w, 

in Fig. 2.10 and Fig. 2.11, respectively.  Geometries of the interconnect structure are 

taken from ITRS [5] 65nm technology node for global wires.  It can be observed that, 

under the condition η<1, incorporation of the via effect results in increased kILD,eff espe-

cially for ILD materials with lower nominal thermal conductivity.  This fact can explain 

why the interconnect temperature is not as high as commonly assumed when low-k ILD 

is implemented in the advanced interconnect structure.  Fig. 2.11 also shows that the via 

effect diminishes rapidly for the portion of wire beyond thermal healing length from each 

end, the LH,m�s for oxide, polymer and air are about 5µm, 10um and 30um as calculated 

from Eq. 2.11.  On the other hand, as shown in Fig. 2.10, for the case of D/w=0.1, the 

cross section of the via is much smaller than that of the wire which results in substantial 

via heating.  The temperature profile along the interconnect is shown in Fig. 2.12.  In this 

case, short via separation suffers more heat backflow from the vias.  However, in the 

typical VLSI interconnect structure, D/w is generally greater than 0.5, so that the hot spot 

locates in the middle of the wire and the via effect is always beneficial. 
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2.5   Temperature in Multilevel Metal Layers 

2.5.1   Multilevel interconnect formula  

Following the previous argument, Joule heat generated in metal wires is considered 

to dissipate only through the heat sink attached to the Si substrate.  This assumption is 

fairly legitimate due to the fact that the chip is usually encapsulated with insulation 

materials.  Therefore, all the heat generated in the upper metal levels has to transfer 

through the lower metal levels to the substrate.  With ∆Ti-1, i defined as the average 
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Fig. 2.12: The figure shows the temperature profile along the wire from the middle of

the interconnect to the via at the right end.  The hot spots usually locate in 

the wire except for extremely small via dimensions. 
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temperature rise between metal layers i-1 and i, the temperature rise at the top layer for 

an N-level metal interconnect can be obtained as 
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where Qi, is the accumulated heat dissipated through the ith level interconnects and αi is 

the metal coverage of the ith level metal layer.  For the case when the via effect is ne-

glected, ηi is set to be 1.  As can been seen from Eq. 2.35, there is more heat flowing 

through the lower levels since Qi represents the sum of all the heat generated from ith 

layer to Nth layer.  As a result, a substantial temperature rise will occur in local wires if 

the effect of the dense via population is not taken into account.  For the following demon-

stration of the importance of the via effect, some reasonable values of via separation are 

assigned to each of the 10 metal layers with polymer used as the ILD in a 65 nm technol-

ogy node structure.  In addition, a worst case current density, jrms, of 2.1e6 A/cm2 is 

assumed for all wires and 50% metal coverage is assumed for each metal layer.  First, as 

shown in Fig. 2.13, the overall temperature rise is much lower with the help of the vias.  

Second, it can be observed that the temperature distribution among metal layers is quite 

different in these two cases.  Ignoring the via effect results in large temperature jump in 

the lower layers and then the temperature rise levels off.  On the other hand, with the via 

effect considered, there is hardly any temperature rise in the lower levels even when  
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 Temperature rise distribution along metal layers from substrate to top metal 

level.  In the case of via effect included, the via separations assigned to the 
metal layers, from 1st to 10th levels, are 5, 10, 30, 50, 100, 150, 200, 300, 
500 and 1000 metal pitches,respectively, based on 65nm technology node.  
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only one fourth of koxide.  Most of the temperature rise is attributed to the upper 

ers with long via separation.  Therefore, from the thermal design point of view, 

erconnects are more problematic .  The concern of RC delay in the global wires 

orse with this additional temperature effect.  

nterconnect temperature rise trend  

rend of interconnect temperature rise due to Joule heating is investigated in Fig. 

e (a).  It is interesting to see that even with increasing current density and lower 

onductivity from the low-k ILDs used for the more advanced technology nodes, 

onnect temperature rise will reach a plateau and then drop.  This phenomena can 
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be understood by realizing that the via separation keeps reducing due to scaling.  The 

same functionality can be reached within a shorter distance.   On the other hand, the 

magnitude of current density and the dielectric constant of the low-k insulators are 

believed to encounter a bottleneck due to reliability concern at 65nm technology node.   

Several scenarios are studied here to identify their impact on interconnect temperature, as 

shown in Fig. 2.14.  Overall, the interconnect temperature rise will be less if either the 

trend of increasing current density or lower-k materials stops at 65nm nodes, while all the 

other aspects of scaling continue.          
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Fig. 2.14: Trend of interconnect temperature rise along technology nodes for different

scenarios. (a) both j and kILD scale according to ITRS.  (b) j scales with 
ITRS, but kILD stops scaling at 65nm node. (c) j stops scaling at 65nm 
node, while kILD continues scaling. (d) both j and kILD stops  scaling at 65 
nm node 
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2.6   Summary 

In conclusion, a compact analytical thermal model has been presented to evaluate the 

spatial thermal distribution and the average interconnect temperature rise under the 

influence of vias.  Both the via effect and heat spreading have been taken into account to 

ensure accurate predictions.  This model provides a quick and accurate interconnect 

temperature rise estimation as well as a comprehensive thermal design guideline.  It will 

be essential for high performance chip designer being able to comprehend the thermal 

impact on the circuit performance and reliability implication in the early design stage.  It 

has been shown that with the help of vias as efficient thermal paths, the effective thermal 

conductivity of the ILD materials can be significantly higher than their nominal values if 

via separation is comparable to the characteristic thermal length.  The interconnect 

temperature can be substantially lower than that predicted from overly simplified 1-D 

thermal model.  Therefore, the thermal problem associated with low-k insulators is not as 

bad as it appears.   

Additionally, a closed form thermal model incorporating the via effect has been for-

mulated to estimate the temperature rise of interconnects in multi-level metal arrays.  It is 

shown that via effect must be considered in the thermal analysis of interconnect struc-

tures.  It is observed that global interconnects would suffer much higher temperature rises 

than local interconnects due to the much longer via separation.  Beyond the 45nm node 

closer packing of vias will alleviate the temperature rise problem. 
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Chapter 3 
 

Thermal Impact on Interconnect Design 

 

 

3.1   Introduction 

 

Thermal effects are very important in determining both reliability and performance 

of interconnects.  Accurate integrity estimation of on-chip interconnect temperature rises 

caused by joule heating is essential for high performance chip design because the wire 

current-carrying capability is stringently limited by interconnect temperature.  Thermal 

effects impact the interconnect design in the following ways.  First, the wire slows down 

with higher temperature due to increasing metal electrical resistivity.  For the temperature 

coefficient of resistivity (TCR) of Cu given in [39], wire resistance goes up by 5-10% as 

interconnect temperature rises by 10-20°C.  As a result, the delay reduction expected 

from the introduction of low-k dielectrics, which have invariably poor thermal conductiv-

ity, will be discounted to some extent.  Second, most of interconnect failure mechanisms 

are temperature related including electromigration (EM).  EM lifetime, mean-time to-fail 
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(MTF), decreased exponentially with inverse interconnect temperature according to 

Black�s equation [19].  It is reported that MTF could be reduced by 90% when intercon-

nect temperature rises from 25°C to 52.5°C [32].  Therefore, traditionally, the current 

density design limits developed by reliability engineers for circuit designers are very 

conservative.  The interconnect temperature is commonly limited to ~105°C for 

electromigration life time considerations [40, 41].   

Having realized the importance of the temperature rise on interconnects, many ef-

forts have been devoted to estimate the interconnect temperature [24, 31] and propose 

�self-consistent� analysis for allowed current density [30, 42].  However, without consid-

ering via effect properly, the estimated interconnect temperature rise can be much higher 

than twice as high compared to the realistic case [43, 44].  The temperature and conse-

quent performance/reliability predictions with those overly simplified thermal analysis 

will deviate even more profoundly with more advanced technology nodes as the via effect 

is more effective for lower-k dielectrics and the via separation is shortened with scaling 

[45].  Extending the work from Chapter 2, our multi-level interconnect thermal model 

incorporating the via effect enables more realistic circuit timing simulation and reliability 

assessment without being excessively conservative.  In this chapter, the impact of Joule 

heating on the scaling of deep sub-micron Cu/low-k interconnects will be investigated in 

detail. [46].  In addition, traditional wisdom requires the on-chip interconnect temperature 

to be no more than 5°C above the silicon temperature (100°C for a typical high perform-

ance microprocessor) for EM lifetime consideration.  However, the prospects of rising 
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interconnect temperature and the need for greater current carrying capability are not 

compatible.  Although it has been proposed to consider EM lifetime and wire self-heating 

simultaneously in generating EM guidelines [23, 30, 42], the lack of realistic interconnect 

temperature estimation makes the proposals fruitless.  In a later section of this chapter, 

combined with our new interconnect thermal model, a comprehensive EM evaluation 

methodology is proposed from the view of coupled performance and reliability analysis 

[45].  

The remainder of this chapter is organized as follows.  In Section 3.2, we discuss 

how the interconnect metrics are influenced by thermal effect.  Section 3.3 addresses the 

foreseeable impact from interconnect scaling trend on wire temperature due to Joule 

heating.  Section 3.4 describes the definition of a �reasonable� worst-case scenario of 

interconnect thermal analysis and applies it to evaluate the thermal effect on Cu/low-k 

interconnects.  In Section 3.5, we perform a coupled assessment of EM reliability and 

current drivability for global interconnects for 22-130 nm technology nodes.  Section 3.6 

investigates the trend of interconnect temperature rise under various scaling scenarios.  

Finally, we summarize and conclude in Section 3.7.   

 

3.2 Thermal Effect on Interconnect Metrics 

 

It suffices to mention here that a non-negligible and increasing resistance of the 

wires leads to a j2ρ (j is the current density) power dissipation in the form of heat. This 
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raises the temperature of the interconnects above the device temperature, especially if 

lower dielectric constant materials, which are also invariably poorer heat conductors, are 

used. 

3.2.1   RC delay 

The delay of the wires can be well approximated by the product of resistance (R) 

and the capacitance of the wire (C), if inductive effects are not important. The wire 

capacitance typically has three components: inter-level, CILD, inter-metal (within the 

same level between metal lines), CIMD, (Fig. 3.1) and the fringe component.  To model 

the RC delay of the wires it is imperative to accurately model both the resistance and the 

capacitance accurately.  

 

H

W

CILD

CIMDAR=H/W

 
 

Fig. 3.1: Schematic showing the inter-metal and the inter-level components of capaci-

tance.  Also showing aspect ratio (AR). 
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It is well known that the electrical resistivity, ρm,is a function of wire temperature, 

and can be modeled as, 

    )](1)[()( 00 TTTT mm −+= βρρ     (3.1) 

here β being the temperature coefficient of resistivity (TCR), and has the value of 4.3e-

3/K for Cu and 4.5e-3/K for Al.  In terms of interconnect capacitance, to gain better 

insight of the role of CILD and CIMD, let us ignore any fringe capacitance for this moment.  

The total interconnect capacitance per unit length can then be simply expressed as:  

              Ctotal=2(CILD+CIMD),        (3.2) 

where    CILD=εILD/2AR  and  CIMD=εIMDAR,      (3.3) 

with AR denotes wire aspect ratio, defined by H/w, where H is the metal thickness 

(height) and w is the width of the wire.  ε represents the respective premittivity for IMD 

and ILD.  Thickness of the ILD is approximately the same as the height of the metal wire.  

The factor of 2 in the denominator for CILD accounts for the overlap with orthogonal 

wires on adjacent levels. The length of overlap is taken to be half the length of the 

interconnect based on the assumption that wire width is half the pitch.  First, we notice 

that, due to the high wire AR, the intra-level (line-to-line) capacitance, CIMD, is dominant.  

Second, since most of the heat is flowing downwards toward the heat sink, the ILD 

assumes the major contribution to the thermal impedance and IMD being a minimal 

factor.  Therefore, heterogeneous dielectric schemes (with different dielectric materials 

for ILD and IMD), should be exploited to optimize RC delay and subside thermal effect, 

such as use low-k dielectrics for IMD and keep silicon dioxide for ILD. 
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3.2.2   Dynamic power consumption 

The second metric of importance, the power dissipation due to interconnects, is a 

result of charging and discharging its capacitance and is given by the dynamic power 

dissipation formula 

fVCSP 2
intwint =         (3.4) 

Here, Sw is the switching activity factor representing the probability of a particular 

interconnect switching during a clock cycle, Cint is the total interconnect capacitance, V is 

the voltage to which the interconnect charges and f is clock frequency. Thus, at a given 

technology node, the interconnect power is heavily dependent on its total capacitance.   

3.2.3   Cross talk noise 

. Cross talk is proportional to the ratio of the inter-metal to the total capacitance [47] 

of the wire. Thus, from the cross talk perspective it is more beneficial to lower just the 

inter-metal capacitance.  Hence, again, an heterogeneous dielectric approach will be 

appropriate to lower coupling noise while contain interconnect temperature rise.  

3.2.4   Electromigration reliablity 

Electromigration is wildly regarded a major failure mechanism of VLSI intercon-

nects[28, 48].  The current through metal wires leads to metal atom migration due to 

momentum exchange between electrons and metal atoms [19].  This migration, over time, 

leads to depletion of enough material so as to initially increase the wire resistance and 

finally cause an open circuit [49].  On the other hand, it also causes excess metal atoms to 
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accumulate at a different location along the wire, which in extreme cases can cause a 

short to the adjacent wire through metal hillocks.  The primary factors, which influence 

electromigration can be divided into those related to the physical structure of the metal 

wire and those related to the conditions of operation.  Certain crystal orientations of thin 

films (metal wire) are more conducive to preventing electromigration.  Among the 

conditions of operation, temperature and the current density play the most important role 

in dictating electromigration, as modeled by the well known Black�s equation, given by 

Eq. 3.5, 

)/exp( TkQjAMTF B
n−=       (3.5) 

where MTF is the meat-time-to-failure (typically for 0.1% of accumulative failure or 10 

years lifetime), A is a constant that is dependent on the geometry and microstructure of 

the interconnect, j is the DC or average current density, the exponent n is typically 2 

under normal operation conductions.  The activation energy Q for Cu has been reported 

in the range of 0.5-1eV [50-52], kB is the Boltzmann�s constant, and Tm is the metal wire 

temperature.  For a middle of the range Q value of 0.75eV, MTF will drop by 50% when 

interconnect temperature rises from 100°C to 110°C.  Usually, the maximum allowable 

current density is limited by the goal that the electromigration lifetime will achieve 10 

years with interconnect temperature maintained at or below 105°C.   
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3.3   Scaling Trend of Joule Heating  

As VLSI technology advances, interconnects have become the limiting factor to IC 

chip performance [3].  Aggressive interconnect scaling has resulted in increasing current 

density, more metal levels, and introduction of low dielectric constant (low-k) materials.  

The growing demand of higher current driving capability and the aggressive shrinking of 

metal pitch has resulted in significant current density rise in the wires (Table 3.1).  Wire  

width is half the wire pitch for all cases if not defined specifically, n is the number of 

layers in each tier, εr,ILD and  kILD  are the relative dielectric constant and thermal conduc-

tivity of the inter-level dielectrics (ILD) for each technology node. 

  

So explosive has the growth been, according to ITRS [5], the rise of interconnect 

current density will outpace the average chip power density by a factor of two for high 

performance microprocessor throughout the technology nodes (Fig. 3.2).   

         Local Tier      Semiglobal Tier         Global Tier  
Tech. 
Node 

 
εr,ILD 

 
  kILD 
[W/m-K]

 
n 

Wire 
Pitch 
[nm] 

Wire 
AR 

Via 
AR 

 
n

Wire 
Pitch 
[nm] 

Wire 
 AR 

Via 
AR 

 
n

Wire 
Pitch  
[nm] 

Wire 
 AR 

Via 
AR 

130 3.3 0.7 2 350 1.6 1.6 4 450 1.6 1.4 2 670 2.0 1.8 
90 2.8 0.45 2 210 1.7 1.7 4 265 1.7 1.5 3 460 2.1 1.9 
65 2.5 0.36 2 150 1.7 1.7 4 195 1.8 1.6 4 290 2.2 2.0 
45 2.1 0.25 2 105 1.8 1.8 4 135 1.8 1.6 4 205 2.3 2.1 
22 1.8 0.17 2 50 2.0 2.0 4 65 2.0 1.8 5 100 2.5 2.3 

Table 3.1: Interconnect parameters for 130 nm to 22nm technology nodes based on ITRS[5]. 



Section: 3.3   Scaling Trend of Joule Heating 

Furthermor

effect [53, 54].  

addition, thermal

tion of dielectric

thermal impedan

consequent impac

Therefore, the im

to Joule heating r

the 65nm techno

�01[5].  We assig

semi-global tier a

0

5

10

15

20

25

30

Po
w

er
 D

en
si

ty
 [W

/c
m

2 ]

0

5

10

15

20

25

30

Po
w

er
 D

en
si

ty
 [W

/c
m

2 ]

Fig. 3.2: Tren

node

pow
22 45 65 90 130 180
0

1

2

3

4

5

Technology Node [nm]

Jm
ax [ M

A
/cm

2]

22 45 65 90 130 180
0

1

2

3

4

5

Technology Node [nm]

Jm
ax [ M

A
/cm

2]

 
ds of chip power density and interconnect Jmax along technology

s suggested by ITRS [5].  Chip power density is calculated by total

er of the chip divided by chip size.  
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e, Cu resistivity will increase due to barriers, surface scattering and skin 

As a result, interconnect joule heating is becoming non-negligible.  In 

 conductivity of low-k dielectrics is decreasing rapidly with the reduc-

 constant (Table 3.1).  The combination of greater heat generation and 

ce is leading to a continuous increasing interconnect temperature and 

t on wire delay and reliability wires is fast emerging as an urgent issue.  

pact of the interconnect �thermal�scaling trend on wire temperature due 

equires immediate attention.  The work presented in this chapter is for 

logy node with all parameters quoted from the newly updated ITRS 

n the first two metal layers as local tier, the following four layers as 

nd the remaining layers as global tier.  The substrate temperature, Tref, is 
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assumed to be fixed at 100°C (which will be true if two-phase microchannel cooler is 

employed in the future [55] ), and the temperature of the top global wire is Tm= 

Tref+∆Tjoule heating.  

 

3.4    Temperature Effect on Cu/low-k Interconnects  

3.4.1   Definition of worst case condition 

To provide robust thermal analysis for interconnects, it is important to identify a rea-

sonable worst case scenario.  Previous work has attempted to evaluate the thermal 

characteristics of interconnects neglecting vias as an effective heat conduction path [4].  

However, ignoring vias in heat transfer predicts unrealistically high temperature rises 

even with moderate current densities.  This is especially true for dielectrics with lower 

thermal conductivities [44, 46].  Therefore, this work includes the via effect in the 

analysis to obtain more realistic results.  Case (1) in Fig. 3.3 shows the widely used 

condition, i.e., all wires flowing the same current density and the via effect ignored.  Case 

(2) represents an isolated global wire.  Although there is no additional heat source be-

tween this wire and the substrate, the thermal impedance is higher in the absence of lower 

level metal.  Case (3) has the same current condition as case (1) but with vias taken into 

account for all metal layers.  Reasonable via separations are assigned for each metal level 

from level one to ten: 5, 20, 50, 100, 150, 200, 300 ,500, 1000 and 2500 interconnect 

pitches.  As shown in Fig. 3.4, case (1) has the highest temperature rise (∆Tjoule heating).  
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But we will disregard this condition as unrealistic as vias are ignored.  Case (3) is worse 

than case (2) and we will use this condition for the following analysis. 

 

Case (1) Case (2) Case (3)

vias

Case (1) Case (2) Case (3)

vias

Case (3)

vias

Fig. 3.3: Configurations of the three thermally worst case scenarios.  Current flows

through all wires at all metal layers in cases (1) and (3).  
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Fig. 3.4: Temperature on the top-level interconnects rises rapidly with increasing

current density. 
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3.4.1   Thermal impact on Cu/low-k Interconnects  

Fig.3.5 compares the thermal performance of several low-k materials.  The  materials 

properties are shown in Table 3.2.  As the figure shows, interconnects with lower dielec-

tric constant materials exhibit significantly higher temperature rises, thus higher 

 

Conductor Dielectrics Parameter 
Cu Al W Air Aerogel Polyimide HSQ FSG Oxide 

k [W/m-K] 400 240 180 0.03 0.17 0.3 0.54 1.05 1.2 
ρ [µΩ-cm] 2.2 3.6 10 - - - - - - 

εr - - - 1.0 1.7 2.5 3.1 3.7 4.0 
 
Table 3.2:  Materials properties of various conductors and dielectrics used in this study.  k 

[W/m-K] is thermal conductivity, ρ [µΩ-cm] is electrical resistivity near 
100ºC and εr  is the relative dielectric constant 

Current Density , J [M A/cm 2] 
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Fig. 3.5: Temperature of top global interconnects rises sharply for Low-k dielec-

trics.  εr: relative dielectric constant, k: thermal conductivity [W/Km].  
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interconnect temperature, Tm.  The product of RmetCtotal per unit length for these dielec-

trics is shown in Fig. 3.6 as a function of current density.  As the figure shows, the low-k 

advantage of reduced capacitance can be offset by the increased temperature rise due to 

poor thermal conductivity.  It should be noted that for the case of air-gap scheme (ILD: 

SiO2 and IMD: Air), the RmetCtotal is relatively constant through the range of current 

density and it is even better than polyimide.  This is because air-gaps reduce the dominat-

ing line-to-line capacitance while leaving the SiO2 ILD intact for better thermal 

conductivity. Since electromigration mean time to failure (MTF) is exponentially de-
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Fig. 3.6: RC delay is strong function of current density on the wires because of

Joule heating.  The lower the dielectric constant, the stronger the  Joule

heating and greater RC degradation. 
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pendent on wire temperature, the maximum allowable current density for a given tem-

perature rise is evaluated in Fig. 3.7 for different low-k materials. 
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: Maximum allowed current density is limited by the maximum allowed ∆T

on the metal wires.  The constraint is more stringent for low-k dielectrics.   
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elay and Reliability Optimization  

ith the possibility that much fatter wires may be used in the global tier to reduce 

, it is important to know the thermal impact of using low aspect ratio lines on the 

 performance and reliability.  In addition, ILD thickness should be evaluated to 

he trade-offs of thermal impedance and capacitance.  The contours of constant 

l, in Fig.3.8 show the optimization of the wire aspect ratio (AR) and the ILD 
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thickness for delay consideration.  The value of H/S (=0.32µm/0.15µm) is fixed, where H 

is metal height and S is wire spacing.  It demonstrates that Joule heating can increase  

delay of the interconnect by as much as 15%.  Fig. 3.9 shows constant MTF contours, 

with the temperature effect included.  The MTF can never reach 50% of MTF at 105°C 

which is the wire temperature specified in ITRS.  We can conclude from Fig. 3.8 and 3.9 

that although fat wires can provide better speed performance, but they are also more 

subject to electromigration failure since the temperature is higher. 
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Fig. 3.8: Constant RmetCtotal contour plots of  global level wiring as functions of wire

aspect ratio (AR) and ILD thickness.  Solid curves represent the case ther-

mal effect neglected.  Dash-line curves include the influence of thermal

effect. (H/S=0.32/0.15 µm).  
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.9: Constant normalized electromigration MTF, MTF(Tm)/MTF(105°C),

contour plots of global level wiring as functions of wire aspect ratio

(AR) and ILD thickness.  (H/S=0.32/0.15 µm).  
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mpact of Joule Heating on Scaling Trend  

ble 3.3 shows the coupled analysis of delay and electromigration MTF for vari-

nology nodes. Column 2 shows the maximum current density specified in ITRS 

mn 3 shows the resultant temperature of the top global wires. The RmetCtotal delay 

 in column 4 and the corresponding MTF is shown in Fig. 3.10 as the solid 

The achievable MTF is about 90% at 130nm node, but drops sharply for the 

g technology nodes. The MTF(Tm) is compared to the MTF(105°C).  To confine 

 temperature at 105°C, the current density has to be reduced as shown in column 
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5 and resultant current drive, compared to the maximum current density specified in 

ITRS, drops drastically as can be observed in column 6. To relax the temperature rise to 

10°C above substrate, the current drive can be improved as shown in column 7. We notice 

that in both cases trying to match certain specific wire temperatures (105°C and 110°C),  

the corresponding MTF rises above the required MTF, as shown in Fig.3.10.  It implies 

that this approach is overly conservative.  Since the MTF of electromigration is also 

inversely proportional to the square of current density, as modeled by the well-known 

Black�s equation, we can achieve the expected MTF by optimizing both the current 

density and wire temperature, which are related by Joule heating.  The result is shown in 

the last three columns of the table.  The optimal current density is much closer to the 

value specified in ITRS. On the other hand, although the wire temperature is higher than 

105°C, as shown in the last column, the MTF is on target, as shown in the flat line in 

Fig.3.10.  

 

Table 3.3: Coupled evaluation of electromigration reliability and performance for global

interconnects for 22-130 nm technology nodes.  Tm is the top global wire temperature

with all the heat sources, including substrate and Joule heating from all metal levels un-

derneath, taken into account.   
61 
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3.7   Summary 

In conclusion, a detailed analysis of the impact of Joule heating on the characteris-

tics of future Cu/low-k interconnects is presented using a realistic full chip model with 

via effect included.  Thermal effects can severely degrade both reliability and speed 

performance. Optimization with various interconnect parameters is provided. Joule 

heating will limit scaling of current density and use of low-k materials. Global wires will 

be more problematic with higher operating temperature and careful consideration is 

imperative.   
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Fig. 3.10: The solid curve shows the MTF (%) that can be achieved under the

current density specified in ITRS.  The broken-line curves show the

MTF under various wire temperature (Tm) criterions and the values re-

fer to the right axis. 
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